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Abstract

Recently deep residual learning with residual units for training very deep neu-
ral networks advanced the state-of-the-art performance on 2D image recognition
tasks, e.g., object detection and segmentation. However, how to fully leverage
contextual representations for recognition tasks from volumetric data has not been
well studied, especially in the field of medical image computing, where a major-
ity of image modalities are in volumetric format. In this paper we explore the
deep residual learning on the task of volumetric brain segmentation. There are
at least two main contributions in our work. First, we propose a deep voxelwise
residual network, referred as VoxResNet, which borrows the spirit of deep residual
learning in 2D image recognition tasks, and is extended into a 3D variant for han-
dling volumetric data. Second, an auto-context version of VoxResNet is proposed
by seamlessly integrating the low-level image appearance features, implicit shape
information and high-level context together for further improving the volumetric
segmentation performance. Extensive experiments on the challenging benchmark
of brain segmentation from magnetic resonance (MR) images corroborated the ef-
ficacy of our proposed method in dealing with volumetric data. We believe this
work unravels the potential of 3D deep learning to advance the recognition per-
formance on volumetric image segmentation.

1 Introduction

Over the last few years, deep learning especially deep convolutional neural networks (CNNs) have
emerged as one of the most prominent approaches for image recognition problems in various do-
mains including computer vision [15, 31, 18, 33] and medical image computing [25, 26, 3, 30].
Most of the studies focused on the 2D object detection and segmentation tasks, which have shown
a compelling accuracy compared to previous methods employing hand-crafted features. However,
in the field of medical image computing, volumetric data accounts for a large portion of medical
image modalities, such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI),
etc. Furthermore, the volumetric diagnosis from temporal series usually requires data analysis even
in a higher dimension. In clinical practice, the task of volumetric image segmentation plays a signif-
icant role in computer aided diagnosis (CADx), which provides quantitative measurements and aids
surgical treatments. Nevertheless, this task is quite challenging due to the high-dimensionality and
complexity along with volumetric data. To the best of our knowledge, there are two types of CNNs
developed for handling volumetric data. The first type employed modified variants of 2D CNN by
taking aggregated adjacent slices [5] or orthogonal planes (i.e., axial, coronal and sagittal) [25, 27]
as input to make up complementary spatial information. However, these methods cannot make full
use of the contextual information sufficiently, hence it is not able to segment objects from volumet-
ric data accurately. Recently, other methods based on 3D CNN have been developed to detect or
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segment objects from volumetric data and demonstrated compelling performance [8, 14, 17]. Nev-
ertheless, these methods may suffer from limited representation capability using a relatively shallow
depth or may cause optimization degradation problem by simply increasing the depth of network.
Recently, deep residual learning with substantially enlarged depth further advanced the state-of-
the-art performance on 2D image recognition tasks [10, 11]. Instead of simply stacking layers, it
alleviated the optimization degradation issue by approximating the objective with residual functions.

Brain segmentation for quantifying the brain structure volumes can be of significant value on diagno-
sis, progression assessment and treatment in a wide range of neurologic diseases such as Alzheimer’s
disease [9]. Therefore, lots of automatic methods have been developed to achieve accurate segmen-
tation performance in the literature. Broadly speaking, they can be categorized into three classes:
1) Machine learning methods with hand-crafted features. These methods usually employed dif-
ferent classifiers with various hand-crafted features, such as support vector machine (SVM) with
spatial and intensity features [37, 22], random forest with 3D Haar like features [38] or appearance
and spatial features [24]. These methods suffer from limited representation capability for accurate
recognition. 2) Deep learning methods with automatically learned features. These methods learn
the features in a data-driven way, such as 3D convolutional neural network [6], parallelized long
short-term memory (LSTM) [32], and 2D fully convolutional networks [23]. These methods can
achieve more accurate results while eliminating the need for designing sophisticated input features.
Nevertheless, more elegant architectures are required to further advance the performance. 3) Multi-
atlas registration based methods [1, 2, 28]. However, these methods are usually computationally
expensive, hence limits its capability in applications requiring fast speed.

To overcome aforementioned challenges and further unleash the capability of deep neural networks,
we propose a deep voxelwise residual network, referred as VoxResNet, which borrows the spirit
of deep residual learning to tackle the task of object segmentation from volumetric data. Exten-
sive experiments on the challenging benchmark of brain segmentation from volumetric MR images
demonstrated that our method can achieve superior performance, outperforming other state-of-the-
art methods by a significant margin.

2 Method

2.1 Deep Residual Learning

Deep residual networks with residual units have shown compelling accuracy and nice conver-
gence behaviors on several large-scale image recognition tasks, such as ImageNet [10, 11] and
MS COCO [7] competitions. By using identity mappings as the skip connections and after-addition
activation, residual units can allow signals to be directly propagated from one block to other blocks.
Generally, the residual unit can be expressed as following

xl+1 = xl + F(xl,Wl) (1)

here the F denotes the residual function, xl is the input feature to the l-th residual unit and Wl is
a set of weights correspondingly associated with the residual unit. The key idea of deep residual
learning is to learn the additive residual function F with respect to the input feature xl. Hence by
unfolding above equation recursively, the xL(L > l ≥ 1) can be derived as

xL = xl +

L−1∑
i=l

F(xi,Wi) (2)

therefore, the feature xL of any deeper layers can be represented as the feature xl of shallow unit l
plus summarized residual functions

∑L−1
i=l F(xi,Wi). The derivations imply that residual units can

make information propagate through the network smoothly.

2.2 VoxResNet for Volumetric Image Segmentation

Although 2D deep residual networks have been extensively studied in the domain of computer vi-
sion [10, 11, 29, 39], to the best of our knowledge, seldom studies have been explored in the field of
medical image computing, where the majority of dataset is volumetric images. In order to leverage
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Figure 1: (a) The architecture of proposed VoxResNet for volumetric image segmentation; (b) The
illustration of VoxRes module.

the powerful capability of deep residual learning and tackle the object segmentation tasks from high-
dimensional volumetric images efficiently and effectively, we extend the 2D deep residual networks
into a 3D variant and design the architecture following the spirit from [11] with full pre-activation,
i.e., using asymmetric after-addition activation, as shown in Figure 1(b).

The architecture of our proposed VoxResNet for volumetric image segmentation is shown in Fig-
ure 1(a). Specifically, it consists of stacked residual modules (i.e., VoxRes module) with a total of
25 volumetric convolutional layers and 4 deconvolutional layers [18], which is the deepest 3D con-
volutional architecture so far. In each VoxRes module, the input feature xl and transformed feature
F(xl,Wl) are added together with skip connection as shown in Figure 1(b), hence the information
can be directly propagated in the forward and backward passes. Note that all the operations are im-
plemented in a 3D way to strengthen the volumetric feature representation learning. Following the
principle from VGG network [31] and deep residual networks [11], we employ small convolutional
kernels (i.e., 3 × 3 × 3) in the convolutional layers, which have demonstrated the state-of-the-art
performance on image recognition tasks. Three convolutional layers are along with a stride 2, which
reduced the resolution size of input volume by a factor of 8. This enables the network to have a large
receptive field size, hence enclose more contextual information for improving the discrimination
capability. Batch normalization layers are inserted into the architecture intermediately for reducing
internal covariate shift [12], hence accelerate the training process and improve the performance. In
our network, the rectified linear units, i.e., f(x) = max(0, x), are utilized as the activation function
for non-linear transform [15].

There is a huge variation of 3D anatomical structure shape, which demands different suitable re-
ceptive field sizes for better recognition peformance. In order to handle the large variation of shape
sizes, multi-level contextual information (i.e., 4 auxiliary classifiers C1-C4 in Figure 1(a)) with deep
supervision [16, 4] is fused in our framework. Therefore, the whole network is trained in an end-to-
end way by minimizing following objective function with standard back-propagation

L(x, y; θ) = λψ(θ)−
∑
α

∑
x∈V

∑
c

wαy
x
c log p

α
c (x; θ)−

∑
x∈V

∑
c

yxc log pc(x; θ) (3)

where the first part is the regularization term (L2 norm in our experiments) and latter one is the
fidelity term consisting of auxiliary classifiers and final target classifier. The tradeoff of these terms
is controlled by the hyperparameter λ. wα (where α indicates the index of auxiliary classifiers) is the
weights of auxiliary classifiers, which were set as 1 initially and decreased till marginal values (i.e.,
10−3) in our experiments. The weights of network are denoted as θ = {W}, pc(x; θ) or pαc (x; θ)
denotes the predicted probability of cth class after softmax classification layer for voxel x in volume
space V , and yxc ∈ {0, 1} is the corresponding ground truth. , i.e., yxc = 1 if voxel x belongs to the
cth class, otherwise 0.
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Figure 2: An overview of our proposed framework for fusing auto-context with multi-modality
information.

2.3 Multi-modality and Auto-context Information Fusion

In medical image computing, the volumetric data are usually acquired with multiple imaging modal-
ities for robustly examining different tissue structures. For example, three imaging modalities in-
cluding T1, T1-weighted inversion recovery (T1-IR) and T2-FLAIR are available in brain struc-
ture segmentation task [20] and four imaging modalities are used in brain tumor (T1, T1 contrast-
enhanced, T2, and T2-FLAIR MRI) [21] and lesion studies (T1-weighted, T2-weighted, DWI and
FLAIR MRI) [19]. The main reason for acquiring multi-modality images is that the information
from multi-modality dataset can be complementary, which provides robust diagnosis results. Thus,
we concatenate these multi-modality data as input, then the complementary information is jointly
fused during the training of network in an implicit way, which demonstrated consistent improvement
compared to any single modality.

Furthermore, in order to harness the integration of high-level context information, implicit shape
information and original low-level image appearance for improving recognition performance, we
formulate the learning process as an auto-context algorithm [35]. Compared with the recognition
tasks in computer vision, the role of auto-context information can be more important in the medical
domain as the anatomical structures are roughly positioned and constrained [36]. Different from [36]
utilizing the probabilistic boosting tree as the classifier, we employ the powerful deep neural net-
works as the classifier. Specifically, given the training images, we first train a VoxResNet classifier
on original training sub-volumes. Then the discriminative probability maps generated from VoxRes-
Net are then used as the context information, together with the original volumes (i.e., appearance
information), to train a new classifier Auto-context VoxResNet, which further refines the semantic
segmentation and removes the outliers. Different from the original auto-context algorithm in an
iterative way [36], our empirical study showed that following iterative refinements gave marginal
improvements. Therefore, we chosen the output of Auto-context VoxResNet as the final results.

3 Experiments

3.1 Dataset and Pre-processing

We validated our method on the MICCAI MRBrainS challenge data, an ongoing benchmark for
evaluating algorithms on the brain segmentation. The task of MRBrainS challenge is to segment the
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Figure 3: The example results of validation data (yellow, green, and red colors represent the WM,
GM, and CSF, respectively): (a) original MR images, (b) results of VoxResNet, (c) results of Auto-
context VoxResNet, (d) ground truth labels.

brain into four-class structures, i.e., background, cerebrospinal fluid (CSF), gray matter (GM) and
white matter (WM). The datasets were acquired at the UMC Utrecht of patients with diabetes and
matched controls with varying degrees of atrophy and white matter lesions [20]. Multi-sequence 3T
MRI brain scans, including T1-weighted, T1-IR and T2-FLAIR, are provided for each subject. The
training dataset consists of five subjects with manual segmentations provided. The test data includes
15 subjects with ground truth held out by the organizers for independent evaluation.

In the pre-processing step, we subtracted Gaussian smoothed image and applied Contrast-Limited
Adaptive Histogram Equalization (CLAHE) for enhancing local contrast by following [32]. Then
six input volumes including original images and pre-processed ones were used as input data in our
experiments. We normalized the intensities of each slice with zero mean and unit variance before
inputting into the network.

3.2 Evaluation and Comparison

The evaluation metrics of MRBrainS challenge include the Dice coefficient (DC), the 95th-percentile
of the Hausdorff distance (HD) and the absolute volume difference (AVD), which are calculated for
each tissue type (i.e., GM, WM and CSF), respectively [20]. The details of evaluation can be found
in the challenge website1.

To investigate the efficacy of multi-modality and auto-context information, we performed extensive
ablation studies on the validation data (leave one out cross-validation). The detailed results of cross-
validation are reported in Table 1. We can see that combining the multi-modality information can
dramatically improve the segmentation performance than that of single image modality, especially
on the metric of DC, which demonstrates the complementary characteristic of different imaging
modalities. Moreover, by integrating the auto-context information, the performance of DC can be
further improved. The qualitative results of brain segmentation can be seen in Figure 3 and we
can see that the results of combining multi-modality and auto-context information can give more
accurate results visually than only multi-modality informaltion.

Regarding the evaluation of testing data, we compared our method with several state-of-the-art meth-
ods, including MDGRU, 3D U-net [6] and PyraMiD-LSTM [32]. The MDGRU applied a neural net-
work with the main components being multi-dimensional gated recurrent units and achieved quite

1MICCAI MRBrainS Challenge: http://mrbrains13.isi.uu.nl/details.php
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Table 1: Cross-validation Results of MR Brain Segmentation using Different Modalities (DC: %,
HD: mm, AVD: %).

Modality GM WM CSF
DC HD AVD DC HD AVD DC HD AVD

T1 86.96 1.36 4.67 89.70 1.92 6.85 79.58 2.71 17.55
T1-IR 80.61 1.92 8.45 85.89 2.87 7.42 76.44 3.00 12.87
T2-FLAIR 81.13 1.92 9.15 83.21 3.00 4.99 75.34 3.03 3.77
All 86.86 1.36 7.13 90.22 1.36 5.12 81.97 2.14 9.87
All+auto-context 87.83 1.36 6.22 90.63 1.36 2.22 82.76 2.14 5.50

good performance. The 3D U-net extended previous 2D version [26] into a 3D variant and high-
lighted the necessity for volumetric feature representation when applied to 3D recognition tasks.
The PyraMiD-LSTM parallelised the multi-dimensional recurrent neural networks in a pyramidal
fashion and achieved compelling performance. The detailed results of testing data from different
methods on brain segmentation from MR images can be seen in Table 2. We can see that deep learn-
ing based methods can achieve much better performance than hand-crafted feature based methods.
The results of VoxResNet (see CU DL in Table 2) by fusing multi-modality information achieved
better performance than other deep learning based methods, which demonstrated the efficacy of our
proposed framework. Incorporating the auto-context information (see CU DL2 in Table 2) , the
performance of DC can be further improved. Overall, our methods achieved the top places in the
challenge leader board out of 37 competing teams.

Table 2: Results of MICCAI MRBrainS Challenge of different methods (DC: %, HD: mm, AVD:
%. only top 10 teams are shown here).

Method GM WM CSF Score*DC HD AVD DC HD AVD DC HD AVD
CU DL (ours) 86.12 1.47 6.42 89.39 1.94 5.84 83.96 2.28 7.44 39
CU DL2 (ours) 86.15 1.45 6.60 89.46 1.94 6.05 84.25 2.19 7.69 39
MDGRU 85.40 1.55 6.09 88.98 2.02 7.69 84.13 2.17 7.44 57
PyraMiD-LSTM2 84.89 1.67 6.35 88.53 2.07 5.93 83.05 2.30 7.17 59
FBI/LMB Freiburg [6] 85.44 1.58 6.60 88.86 1.95 6.47 83.47 2.22 8.63 61
IDSIA [32] 84.82 1.70 6.77 88.33 2.08 7.05 83.72 2.14 7.09 77
STH 84.77 1.71 6.02 88.45 2.34 7.67 82.77 2.31 6.73 86
ISI-Neonatology [22] 85.77 1.62 6.62 88.66 2.07 6.96 81.08 2.65 9.77 87
UNC-IDEA [38] 84.36 1.62 7.04 88.68 2.06 6.46 82.81 2.35 10.5 90
MNAB2 [24] 84.50 1.70 7.10 88.04 2.12 7.74 82.30 2.27 8.73 109

*Score = Rank DC + Rank HD + Rank AVD; a smaller score means better performance.

3.3 Implementation Details

Our method was implemented using Matlab and C++ based on Caffe library [13, 34]. It took about
one day to train the network while less than 2 minutes for processing each test volume (size 240 ×
240×48) using a standard workstation with one NVIDIA TITAN X GPU. Due to the limited capacity
of GPU memory, we cropped volumetric regions (size 80 × 80 × 80 ×m, m is number of image
modalities and set as 6 in our experiments) for the input into the network. This was implemented
in an on-the-fly way during the training, which randomly sampled the training samples from the
whole input volumes. In the test phase, the probability map of whole volume was generated in an
overlap-tiling strategy for stitching the sub-volume results2.

4 Conclusions

In this paper, we analyzed the capabilities of VoxResNet in the field of medical image computing and
demonstrated its potential to advance the performance of biomedical volumetric image segmenta-
tion problems. The proposed method extends the deep residual learning in a 3D variant for handling

2Project page: http://www.cse.cuhk.edu.hk/˜hchen/research/seg_brain.html
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volumetric data. Furthermore, an auto-context version of VoxResNet is proposed to further boost the
performance under an integration of low-level appearance information, implicit shape information
and high-level context. Extensive experiments on the challenging segmentation benchmark corrobo-
rated the efficacy of our method when applied to volumetric data. Moreover, the proposed algorithm
goes beyond the application of brain segmentation and it can be applied in other volumetric image
segmentation problems. In the future, we will investigate the performance of our method on more
object detection and segmentation tasks from volumetric data.
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